

Synthesis of new 7-benzothiazol-2-yl quinolone derivatives as antitumor agents

S. A. Hussein ${ }^{1}$, H. Abd El Maksoud ${ }^{1}$, K. A. Moustafa ${ }^{2}$, M. M. Afify ${ }^{2}$, Mohamed Sadek Abdel-Bakky ${ }^{3,4}$ and Mohamed A. Abdelgawad ${ }^{5,6^{*}}$
${ }^{1}$ Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
${ }^{2}$ Biochemistry Department, Egyptian Atomic Energy Authority, Egypt
${ }^{3}$ Pharmacology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
${ }^{4}$ Pharmacology Department, College of Pharmacy, Al Jouf University, Sakaka, Al Jouf, Saudi Arabia
${ }^{5}$ Pharmaceutical Chemistry Department, College of Pharmacy, Al Jouf University, Sakaka, Al Jouf, Saudi Arabia
${ }^{6}$ Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt

Abstract

In this work, 3-benzothazol-2-yl-phenylamine(1)was synthesized through the reaction of 2-aminothiophenol and 3aminobenzoic acid using polyphosphoric acid as dehydrating agent, and used as start for the preparation of the target compounds IV and V. Benzothiazolyl-phenylamine1 was reacted with ethoxymethylene diethyl malonate ester (EMME) to afford compound II which was thermally cyclized in diphenyl ether to give 7-benzothizol-2-ylquinolone III. Benzaothiazolylquinolone IV was synthesized from the reflux of 7-benzothizol-2-ylquinolone III with POCl_{5}. The nucleophillic substitution of chloride anion of 7-benzothizol-2-ylchloroquinolone IVwith p-toluidine was preceded by using anhydrous potassium carbonate in DMF. Compounds $I V$ and V were screened for antitumor activity against breast carcinoma cell line (MCF-7). The IC 50% of compounds IV and V were 0.066 and $0.056 \mathrm{umol} / \mathrm{mL}$ respectively and showed high activity in comparison to $0.065 \mathrm{umol} / \mathrm{mL}$ standard A. The structure of the compounds $I V$ and V was confirmed using IR, NMR, mass spectroscopy and elemental analysis.

Keywords: quinolone, Benzothiazole, MCF7, Breast cancer

INTRODUCTION

Quinolone derivatives have an exploitable source of new anticancer agents, which might also help addressing sidetoxicity and resistance[1].Also, benzothiazolesor benzoxazoles containing compounds were found to have strong cytotoxic activity CNS cancer cell line (SNB-75)[2-8]. Benzothiazole containing compound A (diagram) have been showed anticancer activity against various cell lines[9\&10].In addition, new synthesized compounds containing benzothiazole linked to quinolone showed anticancer and antimicrobial activities [11].

In order to overcome the side effects and develop potent tumor growth inhibitors as novel anticancer agents, we designed and synthesized a novel quinolone derivatives through
a) Substitution at quinolone bybenzothiazol-2-yl moiety (which has anticancer activity)[7-11]at 7 position of quinolone
b) Maintain the main structure core of quinolone which similar to Voreloxin (B) (anticancer quinolone) and doxorubicin (C) (anticancer agent)[12].
c) Substitution of carboxyl group at 3-postion by ester to increase the lipophilicity of the new compounds[3].
d) Substitution of the carbonyl group at 4-position by chloride or 4-methylphenylamino
e) Over all incorporation of benzothiazole and quinolone in one scaffold structure (Figure 1 and 2)

Figure 1

A

Figure 2

A V

C

C

COOH
$\mathrm{H}_{3} \mathrm{CO}$

V

COOH

Spared th
Scheme 1

a) Reflux in PPA (poly phosphoric acid) for $4 h$

a). EMME, ethanol, reflux for $4 h$ b) diphenyl ether, reflux for $1 h c$ c) $P O C l_{5}$ reflux for $12 h$ d) P-toluidine, anhydrous potassium carbonate, DMF, reflux for $24 h$.

The new compounds were synthesized according schemes 1 and II.

EXPERIMENTAL SECTION

3.1. Chemistry

General

Melting points were determined on a Graffin apparatus and were uncorrected. Element analyses (C, H, and N) were carried out on Perkin-Elmer 2400 analyzer (Perkin-Elmer, Norwalk, CT, USA) at the Micro analytical unit of Cairo University, Egypt. All compounds were within $+0.4 \%$ of the theoretical values. IR spectra were determined as KBr discs on Shimadzu IR 435 Spectrophotometer and values were represented in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ spectra were carried out on a Bruker 400 and 100 MHz NMR Spectrophotometer respectively in Beni-Suef University, BeniSuef, Egypt, using (Bruker, Munich, Germany) in DMSO- d_{6} as a solvent, TMS as internal standard and chemical shifts were recorded in ppm on δ scale. Mass spectra were run on Hewlett Packard 5988 Spectrometer, Micro analytical center, Cairo University, Egypt. Progress of the reactions was monitored by TLC using TLC sheets precoated with UV fluorescent silica gel MERCK 60 F 254 that were visualized by UV lamp.

3.1.1 Procedure for the synthesis of 2-[(3-benzothiazol-2ylphenylamino)-methylene] malonic acid diethyl ester

 (II)A well stirred mixture of 3-benzothiazol-2-yl-phenylamine (1)(2.26g, 0.01 mol) and ethoxymethylene-malonic acid diethyl ester (EMME) $(2.16 \mathrm{~g}, 0.01 \mathrm{~mol})$ in ethanol (30 ml) was heated under reflux for 4 h . The reaction mixture was cooled, filtered, washed with ethanol and crystalized from hot ethanol to give compound II.

Yield: 53%; yellow crystal mp: $135^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right)$: $3432.67(\mathrm{NH}), 3059.51(\mathrm{CH}$ aromatic), 2977.55, 2933.2(CH aliphatic), $1690.3(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 1.25\left(\mathrm{t}, \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.29(\mathrm{t}, \mathrm{H}, J=6.8 \mathrm{~Hz}$, CH_{3}) $4.15\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.23\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right) 7.43-7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.52-7.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $8.03-8.15(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.47(\mathrm{~d}, 1 \mathrm{H},, J=13.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}), 10.79\left(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta \mathrm{ppm} \quad 14.61,14.7,60.21,60.40,95.31,118.36,122.76,123.13,125.88,127.15,129.13,129.16$,
$134.79,142.33,150.30,154.03,165.35,167.02,167.51$.Anal.Calcd. For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 63.62 ; \mathrm{H}, 5.08 ; \mathrm{N}, 7.07$. Found: C, 63.50; H, 5.20; N, 7.10 .
3.1.2 Procedure for the synthesis of 7-(benzothiazol-2-yl)-4-oxo-1,4dihydroquinoline-3-carboxylic acid ethyl ester (III).

The suspension of compounds 1 I ($3.96 \mathrm{~g}, 0.01 \mathrm{~mol}$) in diphenyl ether (30 mL) was heated under reflux for 1 h . The reaction mixture was cooled and filtered. The obtained precipitate was washed with diethyl ether ($4 \times 30 \mathrm{~mL}$).The precipitated solid was dried and crystallized from DMF/ethanol.

Yield: 53%; yellowish white powder $\mathrm{mp}:>300{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right): 3417.24(\mathrm{NH}), 3057.58$ (CH aromatic), 2931.27, 2904.27(CH aliphatic), 1705.69 ($\mathrm{C}=\mathrm{O}$, ester), 1673.91 ($\mathrm{C}=\mathrm{O}$, ketone) $1614(\mathrm{~N}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ ppm 1.30 $\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) 4.25\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz} \mathrm{ArH}), 7.37 .-8.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.19(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{ArH}), 8.42-8.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.79(\mathrm{~s}, 1 \mathrm{H} . \mathrm{N}-\mathrm{CH}=\mathrm{C}) 12.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable),; MS m/z: $352\left[(\mathrm{M}+2)^{+}, 2.33 \%\right], 351\left[(\mathrm{M}+1)^{+}, 6.96 \%\right], 350\left[(\mathrm{M})^{+}, 30 \%\right] ; 304$ [$\left.100 \%\right]$. Anal.Calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 65.13; H, 4.03; N, 9.99. Found: C, 65.20; H, 4.10; N, 8.10 .
3.1.3 Procedure for the synthesis of 7-benzothiazol-2-yl-4-chloroquinoline-3-carboxylic acid ethyl ester (IV). A mixture of 7-(benzothiazol-2-yl)-4-oxo-1,4 dihydroquinoline-3-carboxylic acid ethyl ester (III, $3.69 \mathrm{~g}, 0.01 \mathrm{~mol}$) and $\mathrm{POCl}_{5}(30 \mathrm{ml})$ was heated under reflux for 12 h . The reaction mixture was poured into ice cooled water $(200 \mathrm{~g})$ and stirred for 1 h .The sodium carbonate solution (10%) was added until thereaction mixture became basic to litmus paper. The separated solid was filtered, washed with water and crystallized from DMF to yield compound IV.

Yield: 60%; greyish white powder;mp: $>300{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right): 3046.96(\mathrm{CH}$ aromatic), 2960.2, 2904.27(CH aliphatic), $1709.59\left(\mathrm{C}=\mathrm{O}\right.$, ester), 1673.91 (C=O, ketone); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta \mathrm{ppm} 1.32\left(\mathrm{t}, 3 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) 4.21(\mathrm{q}$, $\left.2 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.44-7.95(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.04 .-8.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.88(\mathrm{~s}, 1 \mathrm{H} . \mathrm{N}-\mathrm{CH}=\mathrm{C})$; ${ }^{13}$ CNMR (DMSO- d_{6}) δ ppm 14.97, 59.12, $111.38,112.24,116.24, .118 .26,122.75,123.07,125.48,125.71$, 127.06, 127.25, 128.24, 134.76, 140.24, 150.23, 157.23, 154.26, 174.74; MS m/z: $370\left[(\mathrm{M}+2)^{+}, 39.85 \%\right], 369$ $\left[(\mathrm{M}+1)^{+}, 24.39 \%\right], 368\left[(\mathrm{M})^{+}, 100 \%\right]$; Anal.Calcd. For $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 61.87$; H, 3.55; N, 7.60. Found: C, 61.90; H, 3.60; N, 7.80 .
3.1.4 Procedure for the synthesis of 7-benzothiazol-2-yl-4-P-tolylamino-quinoline-3-carboxylic acid ethyl ester (V). To a solution of 7-benzothiazol-2-yl-4-chloroquinoline-3-carboxylic acid ethyl ester (IV, $3.68 \mathrm{~g}, 0.01 \mathrm{~mol}$.) and anhydrous potassium carbonate in DMF (30 mL), 4-methylaniline $(1.07 \mathrm{~g}, 0.01 \mathrm{~mol}$.) was added .The reaction mixture was heated under reflux for 24 h . The reaction mixture was poured into ice cooled water (100 mL) . The obtained solid was filtered and crystallized from DMF to yield compound IV.

Yield: 60%; grey powder; mp: $>300{ }^{0} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right): 3053.73$ (CH aromatic), 2975.62 (CH aliphatic), 1705.73 $\left(\mathrm{C}=\mathrm{O}\right.$, ester), $1619.91(\mathrm{~N}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta \mathrm{ppm} 1.39\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.22\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.96-7.54(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.73-7.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.05-8.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.71(\mathrm{~s}$, $1 \mathrm{H} . \mathrm{ArH}), 8.86(\mathrm{~s}, 1 \mathrm{H} . \mathrm{N}-\mathrm{CH}=\mathrm{C}), 10.21(\mathrm{~s}, \mathrm{NH}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm}, 18.28,21.26,49.23,115.44,118.25$, $119.45,122.73,123.12,127.11,128.22,129.70,130.42,132.24,134.77,140.32,142,22,154.18,155.22,166.64$; MS m/z: $441\left[(\mathrm{M}+2)^{+}, 0.39 \%\right], 440\left[(\mathrm{M}+1)^{+}, 1.10 \%\right], 439\left[(\mathrm{M})^{+}, 3.31 \%\right], 304[100 \%]$; Anal.Calcd. For $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 71.05 ; \mathrm{H}, 4.82 ; \mathrm{N}, 9.56$. Found: C, 71.10; H, 4.70; N, 9.50 .

3.2 Biological evaluation

3.2.1 Anticancer screening

Materials

Human tumor cell lines:

Breast carcinoma cell lines (MCF-7) used in this study were obtained from the American Type Culture Collection (ATCC, Minisota, U.S.A.) through the Tissue Culture Unit of the Egyptian Organization for Biological Products and Vaccines, Vacsera, (Giza, Egypt). The tumor cell lines were maintained and processed at Center for Genetic Engineering, Al-Azhar University, Cairo, Egypt.

Chemicals

Dimethylsulphoxide (DMSO), Dulbecco's Modified Eagle Medium (DMEM), trypan blue, Fetal Bovine Serum, Penicillin/ Streptomycin antibiotic and Trypsin- EDTA was purchased from Sigma Aldrich Chemical Co. (Mo, U.S.A). Tris buffer was obtained from Applichem, Germany. All chemicals and reagents used in this study are of highest analytical grade.

Methods

Preparation of test compounds:

The tested derivatives IV and \mathbf{V} were dissolved in dimethylsulfoxide (DMSO) as a stock stored at $-20^{\circ} \mathrm{C}$. Different concentrations of the compounds $0,6.25,12.5,25,50$ and $100 \mu \mathrm{~g} / \mathrm{ml}$ in culture medium were used.

Preparatory steps prior to cytotoxicity investigation:

Maintenance of MCF-7 in the laboratory, cryopreservation of cells, collection of cells by trypsinization and determination and counting of viable cells are performed according to the methods of Abdelgawad et al.[13]and Ahmed et al.[14]

Determination of potential cytotoxicity of the synthesized derivatives MCF-7.

The cytotoxicity was carried out using Sulphorhodamine-B (SRB) assay following the method reported by Vichai and Kirtikara[15].

Cells of MCF-7 cell lines are seeded in 16 well microtiter plates at a confluence of 1000-2000 cells/well, 100 $\mu 1 /$ well. After 24 h , cells will be incubated for 72 h with graded concentrations from drugs $(0,6.25,12.5,25,50$ and $100 \mu \mathrm{~g} / \mathrm{ml}$). DMEM containing 10% foetal calf serum, 1% sodium pyruvate, $100 \mathrm{U} / \mathrm{ml}$ penicillin and $100 \mathrm{mg} / \mathrm{ml}$ streptomycin was used as culture medium and incubated at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. At the end of the incubation, the medium is discarded. The cells are fixed with 150μ l cold trichloroacetic acid 10% final concentration for 1 hour at 4 ${ }^{0} \mathrm{C}$. The plates were washed with distilled water using automatic washer (Tecan, Germany) and stained with $50 \mu \mathrm{l}$ 0.4% SRB dissolved in 1% acetic acid for 30 minutes at room temperature in dark. The plates were washed with 1 $\%$ acetic acid to remove unbound dye and air-dried for 24 h . The dye was solubilized with $150 \mu \mathrm{l} / \mathrm{well}$ of 10 mM tris base (PH 7.4) for 5 min on a shaker at 1600 rpm . The optical density (OD) of each well was measured spectrophotometrically at 490 nm using an ELISA microplate reader. The mean background absorbance was automatically subtracted and mean values of each derivative and compound A concentration was calculated. The experiment was repeated 3 times. The percentage of cell survival was calculated by using the following formula,

Surviving percent $=[$ O.D. $($ treated cells $) /$ O.D. $($ control cells $)] \times 100$.
The IC_{50} values (the concentrations of derivatives required to produce 50% inhibition of cell growth) were also calculated using linear trend line equation.

RESULTS AND DISCUSSION

2.1 Chemistry

In this manuscript, the synthesis of new compounds containing quinolone and benzothiazole moieties was made. The antitumor benzothiazole nucleus was merged with quinolone nucleus. 7-Benzothiazol-2-yl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester(III)was prepared and employed for the preparation of the target compounds IV and V.

3-Benzothiazol-2-yl-phenylamine (1) was reacted with ethoxymethylene-malonic acid diethyl ester (EMME) in ethanol to give compound II . IR spectroscopy of compound II showed the carbonyl group at $1690.3 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR showed the effect on the intramolecular of hydrogen bond in the spectrum of compound II through the appearance of the two equivalent ethyl groups in different positions at ppm 1.25 or 1.29 for CH_{3} groups and 4.15 or 4.23 for CH_{2} also in ${ }^{13} \mathrm{CNMR}$ proved the same explanation as the aliphatic CH appeared at ppm 14.61 or 14.7 , for CH_{3} groups and at 60.21 or 60.40 for CH_{2} groups (figure 3) .

Figure (1) The intramolecular hydrogen bond in compound II and formation of sex membered ring

The 7-(benzothiazol-2-yl)-4-oxo-1,4 dihydroquinoline-3-carboxylic acid ethyl ester (II) was synthesized through thermal cyclization of 2-[(3-benzothiazol-2ylphenylamino)-methylene] malonic acid diethyl ester (II) using diphenyl ether.
The structure of the quinolone III was confirmed by using, NMR which showed the disappearance of one ethyl, also IR spectrum showed two peaks corresponding to the two carbonyl groups of ester and ketone. Also in mass spectrum, the molecular ion peak appeared at $\left[\mathrm{M}^{+}\right]$equivalent to 350 in percentage 30% and $[\mathrm{M}+2]$ appeared as a result of presence of sulphur. The chloroquinolone IV was prepared through the reflux of quinolone II with POCl_{5}.

The HNMR of the prepared chloroquinolone IV showed disappearance of NH peak and deshielding of proton as a result of -I (inductive effect) of chloride. In the IR spectrum of compound IV, the carbonyl of ketone and NH peakswere absent. Additionally, the mass spectrum of compound IV reveled molecular ion peaks at $\mathrm{m} / \mathrm{z} 368$ and 370 corresponding to $[\mathrm{M}]^{+}$and $[\mathrm{M}+2]^{+}$, respectively in ratio of $3: 1$ (Cl pattern).

The nucleophillic substitution of chloroquinolone IV with p-toluidine in DMF in presence of anhydrous potassium carbonate results in the formation of 7-benzothiazol-2-yl-4-P-tolylamino-quinoline-3-carboxylic acid ethyl ester (V).The structure of compound V was confirmed through ${ }^{1} \mathrm{HNMR}$ and mass spectrum. The HNMR of compound showed the appearance of new band at ppm 2.13 equivalent to 3 H of tolyl group and increase the integration of aromatic proton in comparing to compound IV. Also in mass spectrum, the molecular ion peak appeared at $\mathrm{m} / \mathrm{z} 439$ at intensity 3.31% and $\mathrm{M}+2$ ion appeared which indicated the presence of sulphur in its structure.

2.2 Anticancer activity

Data are showing the anti-proliferative effects of the tested derivatives on (MCF-7) cell line in table 1 (Figures 1 and 2). Derivatives IV or V produced a marked decrease in the percentage survivability of MCF-7 by increasing the dose of derivatives (0 to $100 \mu \mathrm{~mol} / \mathrm{ml}$). Based on the values of IC_{50}, the IC 50% of compounds IV, V and the slandered 2-(4-aminophenyl)benzothiazole are $0.066 \mu \mathrm{~mol} / \mathrm{ml}, 0.056$ and 0.065 respectively. (table1)

Table 1: Anti-proliferative effect of quinolone derivatives IV, V and slandered on breast carcinoma cell lines (MCF-7) in vitro

Compound no	IC50 $\mu \mathrm{g} / \mathrm{ml}$	IC50 $\mu \mathrm{mol} / \mathrm{ml}$
IV	24.6	0.066
V	25	0.056
Standard A	14.69	0.065

CONCLUSION

The synthesized derivatives exhibited strong cytotoxic activity at MCF-7 in vitro. Compound \mathbf{V} seemed to have the most potent cytotoxic effect.

REFERENCES

[1]Sissi C, Palumbo M. Curr Med Chem Anticancer Agents.2003, 3(6), 439-50.
[2]OrhanPüsküllü M, Tekiner B, Suzen S. Mini Rev Med Chem. 2013, 13(3), 365-72.
[3] LucielliSavegnago', Aline I. Vieira, NatáliaSeus, Bruna S. Goldani, Micheli R. Castro, Eder JoãoLenardão, Diego Alves. Tetrahedron Letters 2013, 54, 1, 40-44.
[4] I. B. Afanas'ev, A. I. Dorozhko, A. V. Brodskii, V. A. Kostyuk, and A. I. Potapovitch, Biochemical Pharmacology,1989, 38, (11) 1763-1769.
[5] J. H. Mitchell, P. T. Gardner, D. B. McPhail, P. C. Morrice, A. R. Collins, and G. G. Duthie, Archives of Biochemistry and Biophysics,1998, 360, no. 1, pp. 142-148, 1998.
[6] Mustapha El Bakkali, LhassaneIsmaili, Isabelle Tomassoli, Laurence Nicod, Marc Pudlo, and Bernard Refouvelet,: International Journal of Medicinal Chemistry Volume 2011 (2011), Article ID 592879, 10 pages http://dx.doi.org/10.1155/2011/592879.
[7]Karali N, Güzel O, Ozsoy N, Ozbey S, Salman A. Eur J Med Chem. 2010, 45(3):1068-77. doi: 10.1016/j.ejmech.2009.12.001. Epub 2009 Dec 21.
[8]Cressier D, Prouillac C, Hernandez P, Amourette C, Diserbo M, Lion C, Rima G. Bioorg Med Chem. 2009 7(14):5275-84. doi: 10.1016/j.bmc.2009.05.039. Epub 2009 May 21.
[9] Rosanna Caputo, Maria Luisa Calabrò, Nicola Micale, Aaron D. Schimmer, Moshin Ali, Maria Zappalà, Silvana Grasso, medicinal chemistry research, September 2012, 21, (9), 2644-2651.
[10] Kok SH1, Gambari R, Chui CH, Yuen MC, Lin E, Wong RS, Lau FY, Cheng GY, Lam WS, Chan SH, Lam KH, Cheng CH, Lai PB, Yu MW, Cheung F, Tang JC, Chan AS, Bioorg Med Chem. 2008 16(7):3626-31. doi: 10.1016/j.bmc.2008.02.005. Epub 2008 Feb 8.
[11]Mohamed. A. Shabana, Ossama M. Al Badryb, Aliaa M. Kamal andMohamd A. Abdelgawad; journal of chemical research 2008, 715-718.
[12] Rachael E. Hawtin1, David E. Stockett, Jo Ann W. Byl, Robert S. McDowell, Nguyen Tan, Michelle R. Arkin, Andrew Conroy, Wenjin Yang, Neil Osheroff, Judith A. Fox; Voreloxin Is an Anticancer Quinolone Derivative that Intercalates DNA and Poisons Topoisomerase II; PLoSONE | www.plosone.org April 2010, 5 (4), e10186
[13]Abdelgawad M. A., Abdellatif K. R. A. and Ahmed O. M..Design, Medicinal chemistry Med chem 2014, S1: 17.
[14]Ahmed, S. A.; Ahmed O. M. and Abdou Osman Abdelha. European Journal of Chemistry, 2014, 5 (2) 334-338. [15]Vichai , V.; Kirtikara , K. Nat Protoc. 2006, 1(3), 1112-1116.
[16]Ahmed S. A., Ahmed O. M. andElgendy H. S. Journal of Pharmacy Research 2014,8(9), 1303-1313
[17] Kumar A., SuchethaKumari N., Bhargavan D. Asian J Pharm Clin Res, Vol 5, Issue 3, 2012, 146-148

